仓诗建
所在系:产品设计系
职称:教授
办公电话:022-60602491
电子邮箱:csj98231@tust.edu.cn
一、 个人简介
仓诗建,教授,硕士研究生导师。2019年博士毕业于天津大学。曾入选天津市优秀青年教师、天津市高校“中青年骨干人才培养创新计划”以及天津市社科联“新时代青年学者”。目前为天津科技大学博彩平台大全普西工作室负责人,天津市系统科学与工业控制学会监事。已主持完成省部级项目3项,参与国家自然科学基金项目2项;主持为企业服务的横向项目1项,到账金额60万元;发表论文80多篇,其中被SCIE、EI检索的论文有40余篇;授权发明专利20,实用新型专利15项,外观设计专利100余项;指导学生获40多个国家级、省部级学科竞赛以及专业比赛的奖项。担任CSCD期刊《博彩平台大全》和英文SCI期刊《Complexity》的客座编辑,是《博彩平台大全》《博彩平台大全》《Chinese Physics B》《Nonlinear Dynamics》《Chaos, Solitons & Fractals》《Chaos》《IEEE Transactions on Intelligent Transportation Systems》《IEEE Transactions on Circuits and Systems I》《Applied Mathematical Modelling》等期刊的审稿人。
二、 研究(招生)方向
1. 工业产品设计的理论、方法与实践
2. 设计思维与系统创新
3. 控制科学与工程,非线性系统理论及应用
三、 近五年代表性研究成果
[1] A novel SCDM algorithm with offset centroid-driven weight adaptation and its application to appearance design of automotive steering wheels[J]. Advanced Engineering Informatics, 2024, 61: 102488.(中科院1区TOP期刊)
[2] KANO-AHP-TOPSIS混合模型在泥人张包装设计中的应用研究 [J]. 包装工程, 2022, 43 (18): 169-177.
[3] Conservative dynamics in a novel class of 3D generalized thermostatted systems[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2022, 32(8): 083143.(中科院2区期刊)
[4] Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator[J]. Chaos, Solitons & Fractals, 2022, 158: 112016.(中科院1区TOP期刊)
[5] Global structures of clew-shaped conservative chaotic flows in a class of 3D one-thermostat systems[J]. Chaos, Solitons & Fractals, 2022, 154: 111687.(中科院1区TOP期刊)
[6] Pseudo-random number generator based on a generalized conservative Sprott-A system[J]. Nonlinear Dynamics, 2021, 104: 827-844.(中科院2区期刊)
[7] 基于状态观测器的异结构混沌系统同步 [J]. 山东大学学报(工学版), 2021, 51 (06): 75-83.
[8] 一种基于保守混沌的密钥分发协议及图像加密算法 [J]. 计算物理, 2021, 38 (02): 231-243.
[9] Generating multicluster conservative chaotic flows from a generalized Sprott-A system[J]. Chaos, Solitons & Fractals, 2020, 133: 109651.(中科院1区TOP期刊)
[10] A generic method for constructing n-fold covers of 3D conservative chaotic systems[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(3): 033103.(中科院2区期刊)
[11] Conservative chaos and invariant tori in the modified Sprott A system[J]. Nonlinear Dynamics, 2020, 99: 1699-1708.(中科院2区TOP期刊)
[12] Chaotic and subharmonic oscillations in a DC–DC boost converter with PWM voltage–current hybrid controller and parallel MR load[J]. Nonlinear Dynamics, 2020, 99(2): 1321-1339.(中科院2区TOP期刊)
[13] Mechanical analysis and ultimate boundary estimation of the chaotic permanent magnet synchronous motor[J]. Journal of the Franklin Institute, 2019, 356(10): 5378-5394.(中科院2区期刊)
[14] Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points[J]. Nonlinear Dynamics, 2019, 95: 381-390.(中科院2区TOP期刊)